[PDF] Java, Java, Java Object-Oriented
Problem Solving (2nd Edition)

Ralph Morelli - pdf download free book

Books Details:

Title: Jawva, Java, Java Object-Orien
Author: Ralph Morelli

Released: 2002-02-21

Language:

Pagez: 862

ISBN: 0130333700

ISENL13: 975-0130333704

ASIM: 0130333700

CLICK HERE FOR DOWNLOAD

pdf, mobi, epub, azw, kindle

Description:
From the Inside Flap Preface Who Should Use This Book?

The topics covered and the approach taken in this book are suitable for a typical depthfirst
Introduction to Computer Science (CS1) course or for a slightly more advanced Java as a Second
Language course. The book is also useful to professional programmers making the transition to Java


http://red.wutf.space/books3/?pid=1483567935&d=20-10-01&dm=null

and object-oriented programming.

The book takes an "objects first" approach to programming and problem solving. It assumes no
previous programming experience and requires no prior knowledge of Java or object-oriented
programming. Why Start with Objects?

Java, Java, Java takes an "objects early" approach to teaching Java, with the assumption that
teaching beginners the "big picture" early gives them more time to master the principles of object-
oriented programming.

The first time I taught Java in our CS1 course I followed the same approach I had been taking in
teaching C and C++ - namely, start with the basic language features and structured programming
concepts and then, somewhere around midterm, introduce object orientation. This approach was
familiar, for it was one taken in most of the textbooks then available in both Java and C++.

One problem with this approach was that many students failed to get the big picture. They could
understand loops, if-else constructs, and arithmetic expressions, but they had difficulty decomposing
a programming problem into a well organized Java program. Also, it seemed that this procedural
approach failed to take advantage of the strengths of Java's object orientation. Why teach an object-
oriented language if you're going to treat it like C or Pascal?

I was reminded of a similar situation that existed when Pascal was the predominant CS1 language.
Back then the main hurdle for beginners was procedural abstraction - learning the basic
mechanisms of procedure call and parameter passing and learning how to design programs as a
collection procedures. Oh! Pascal!, my favorite introductory text, was typical of a "procedures early"
approach. It covered procedures and parameters in Chapter 2, right after covering the assignment
and I/O constructs in Chapter 1. It then covered program design and organization in Chapter 3. It
didn't get into loops, if-else, and other structured programming concepts until chapter 4 and beyond.

Presently, the main hurdle for beginners is object abstraction. Beginning programmers must be able
to see a program as a collection of interacting objects and must learn how to decompose
programming problems into well designed objects. Object orientation subsumes both procedural
abstraction and structured programming concepts from the Pascal days. Teaching "objects early"
takes a top-down approach to these three important concepts. The sooner you begin to introduce
objects and classes, the better the chances that students will master the important principles of
object orientation.

Object Orientation (0OO) is a fundamental problem solving and design concept, not just another
language detail that should be relegated to the middle or the end of the book (or course). If OO
concepts are introduced late, it is much too easy to skip over them when push comes to shove in the
course.

Java is a good language for introducing object orientation. Its object model is better organized than
C++. In C++ it is easy to "work around" or completely ignore OO features and treat the language
like C. In Java there are good opportunities for motivating the discussion of object orientation. For
example, it's almost impossible to discuss applets without discussing inheritance and polymorphism.
Thus rather than using contrived examples of 00 concepts, instructors can use some of Java's basic
features applets, the class library, GUI components - to motivate these discussions in a natural way.



Key Features
In addition to its objects early approach, this book has several other important features.

The CyberPet Example. Throughout the text a CyberPet class is used as a running example to
motivate and illustrate important concepts. The CyberPet is introduced in Chapter 2, as a way of
"anthropomorphizing" the basic features of objects. Thus individual CyberPets belong to a class
(definition), have a certain state (instance variables), and are capable of certain behaviors like eating
and sleeping (instance methods). Method calls are used to command the CyberPets to eat and sleep.
In Chapter 3 the emphasis is on defining and using methods and parameters to promote
communication with Cyberpets. In subsequent chapters, concepts such as inheritance, randomness,
animation, and threads are illustrated in terms of the CyberPet. Some of the lab and programming
exercises are also centered around extending the behavior and sophistication of the CyberPet.

Applets and GUIs. Applets and GUIs are first introduced in Chapter 4 and then used throughout the
rest of the text. Clearly, applets are a "turn on" for introductory students and can be used as a good
motivating factor. Plus, event-driven programming and Graphical User Interfaces (GUIs) are what
students ought now to be learning in CS1. We are j long past the days when command-line interfaces
were the norm in applications programming. Another nice thing about Java applets is that they are
fundamentally object oriented. To understand them fully; students need to understand basic OO
concepts. That's why applets are not introduced until Chapter 4, where they provide an excellent
way to motivate the discussion of inheritance and polymorphism.

Companion Web Site. The text is designed to be used in conjunction with a companion Web site that
includes many useful resources, including the Java code and Java documentation (in HTML) for all
the examples in the text, additional lab and programming assignments, on-line quizzes that can be
scored automatically, and PowerPoint class notes. Problem Solving Approach. A pedagogical,
problem solving approach is taken throughout the text. There are total of 13 fully developed case
studies, as well as numerous other examples that illustrate the problem solving process. Marginal
notes in the text repeatedly emphasize the basic elements of object-oriented problem solving: What
objects do we need? What methods and data do we need? What algorithm should we use? And so on.
Self-study Exercises. The book contains more than 200 self-study exercises, with answers provided
at the back of each chapter. End-of-Chapter Exercises. Over 400 end-of-chapter exercises are
provided, including "Challenge" exercises at the end of most sets. The answers are provided in an
Instructor's Manual, which is available to adopters. Programming, Debugging and Design Tips. The
book contains nearly 400 separately identified "tips" (Programming Tips, Debugging Tips, Effective
Design Principles, and Java Language Rules) that provide useful programming and design
information in a nutshell. Laboratory Sections. Each chapter concludes with a laboratory exercise, so
the text can easily be used to support lab-based CS1 courses (such as ours). For CS1 courses that
are not lab-based, these sections can still be read as preparation for a programming assignment. For
each lab in the text, the companion Web site contains additional resources and handouts, as well as
a repository of alternative lab assignments. From the Library Sections. Each chapter includes a
section that introduces one or more of the library classes from the Java API (Application
Programming Interface). In the early chapters these sections provide a way of introducing tools,
such as I/O classes and methods, needed to write simple programs. In subsequent chapters, some of
these sections introduce useful but optional topics, such as the NumberFormat class used to format
numeric output. Others introduce basic GUI (Graphical User Interface) components that are used in
program examples and the laboratory sections. Object-Oriented Design Sections. Each chapter
includes a section on Object-Oriented Design which is used to underscore and amplify important
principles such as inheritance, polymorphism, and information hiding. Java Language Summary.
Those chapters that introduce language features contain Java Language Summary sections that
summarize the feature's essential syntax and semantics. Organization of the Text



The book is organized into three main parts. The first part (Chapters 0 through 4) introduces the
basic concepts of object orientation, including objects, classes, methods, parameter passing,
information hiding, inheritance, and polymorphism. Although the primary focus in these chapters is
on object orientation, rather than Java language details, each of these chapters has a Java Language
Summary section that summarizes the language elements introduced.

In Chapters 1 to 3 students are given the basic building blocks for constructing a Java program from
scratch. Although the programs at this stage have limited functionality in terms of control structures
and data types, the priority is placed on how objects are constructed and how they interact with
each other through method calls and parameter passing. --This text refers to an out of print or
unavailable edition of this title.

From the Back Cover

This second edition of Java, Java, Java offers a robust, accessible, and flexible problem-solving
perspective. The use of Unified Modeling Language (UML) diagrams throughout the text, strongly
emphasizes object-oriented design. This book assists students and professionals with their most
challenging problem as beginning programmers: object abstraction, or how to use interacting
objects and methods.

Using a top-down approach, the author focuses on problem decomposition and program design from
the beginning. This methodology[Jalong with its lucid and engaging exercises and analogies[Jsets this
book apart. Morelli introduces advanced Java features including GUI's (e.g., AWT and Swing),
exceptions, threads, files, and sockets. The adaptable and accessible style allows instructors to
choose which advanced concepts to teach to introductory students, while intermediate-level
programmers can benefit from its thorough, advanced feature coverage.

Java, Java, Java's Numerous Distinguishing Innovations:

e Emphasizes early OO design concepts such as inheritance and information hiding.

e Uses UML diagrams throughout to emphasize object-oriented design.

e Features GUI elements and applets to captivate and maintain the reader's interest while
introducing real-world examples.

¢ Incorporates action-learning techniques such as "Hands on Learning" sections, CyberPet
examples. and drop-in boxes on effective design, programming and debugging tips, and Java
language rules.

e Covers advanced features of Java: GUI's, graphics and drawing; exceptions; recursive problem
solving;. threads and concurrent programming; files, streams, and input/output techniques;
sockets and networking; and data structures.

e Includes a Companion Website with extensive supplementary resources, such as a Study
Guide, PowerPoint slides, and Java code www.prenhall.com/morelli

e Title: Java, Java, Java Object-Oriented Problem Solving (2nd Edition)
e Author: Ralph Morelli



e Released: 2002-02-21

e Language:

e Pages: 862

e ISBN: 0130333700

e ISBN13: 978-0130333704
e ASIN: 0130333700




